Simulations, and probability and statistics review

Mauricio Romero

Simulations, and probability and statistics review

Introduction and simulations

Review of probability and statistics

Statistical inference

Application: is a coin fair?

Simulations, and probability and statistics review

Introduction and simulations

Review of probability and statistics

Statistical inference

Application: is a coin fair?

Simulation (i.e., creating fake data)

- Why do this? Why not just use real data?
- Because with real data, we don't know what the right answer is
- So if we do some method, and it gives us an answer, how do we know if the answer is right?
- Simulation lets us know the right answer
- And if the method works (at least in our fake scenario), we can apply it to some real data

Goal: Uncovering the truth

- When it comes down to it, what is the purpose of data analysis?
- When we work with data, we have this idea that there exists a true model
- The true model is the way the world actually works!
- But we don't know what that true model is

The purpose of data analysis

- So that's where the data comes in
- The true model generated the data (the 'data generating process' or DGP)
- By looking at the data we're trying to work backwards to figure out what is the 'data generating process'
- With simulation, we know what generated the data and what the true model is. Thus we can check how close we get with our data analysis

Example

- Let's generate 500 coin flips
- True model: generate heads with probability $1 / 2$ and tails with probability $1 / 2$

```
coins <- sample(c("Heads","Tails"), 500,replace=T)
```


Example

- Now let's take that data as given and analyze it in our standard way!
- The proportion of heads is 'mean(coins $==$ 'Heads')' (≈ 0.496)
- And we can look at the distribution, as we would:

```
mean(coins=='Heads')
barplot(prop.table(table(coins)))
#THE GGPLOT2 WAY
#ggplot(as.data.frame(coins), aes(x=coins))+geom_bar()
```


Example

- So what's our conclusion?
- We would "estimate" that the true model generates heads ≈ 0.496 of the time
- $\frac{1}{2}$ is correct, so pretty close! But not exact.
- What if it always errs on the same side? Then it's not a good method at all!

Simulation in a loop

- We can go a step further by doing this simulation over and over again in a loop!
- This will let us tell whether our method gets it right on average
- And, when it's wrong, how wrong it is!

Simulation in a loop

```
#A blank vector to hold our results
propHeads <- c()
#Let's run this simulation 2000 times
for (i in 1:2000) {
    #Re-create data using the true model
    coinsdraw <- sample(c("Heads","Tails"), 500,replace=T)
    #Re-perform our analysis
    result <- mean(coinsdraw=="Heads")
    #And store the result
    propHeads[i] <- result
}
#Let's see what we get on average
stargazer(as.data.frame(propHeads), type='text')
#And let's look at the distribution of our findings
plot(density(propHeads),xlab='Proportion Heads',
main='Mean of 501 Coin Flips over 2000 Samples')
abline(v=mean(propHeads), col='red')
```


Mean of $\mathbf{5 0 0}$ Coin Flips over $\mathbf{2 0 0 0}$ Samples

Simulation in a loop

- Now that's pretty exact!
- What are we learning here?
- The method that we used (taking the proportion of heads) will, on average, give us the right answer $\left(\frac{1}{2}\right)$
- Good! We can apply this method to the the real world
- Caveat: in any given sample that we actually observe, it might be a little off

Real world

- Imagine we didn't know the answer was $\frac{1}{2}$
- We wan to know what proportion of the time will a coin land heads
- Collect data on coin flips
- Perform our analysis method - take proportion of heads, and get ≈ 0.496
- Conclude that the true model produces heads ≈ 0.496 of the time
- We wouldn't be dead on, but on average we'd be right!
- Statistical inference is all about formalizing this process

Simulations, and probability and statistics review

Introduction and simulations

Review of probability and statistics

Statistical inference

Application: is a coin fair?

Simulations, and probability and statistics review

Introduction and simulations

Review of probability and statistics

Statistical inference

Application: is a coin fair?

Warning... this is hard

- Randomness is all around us
- Our brain is NOT hardwired to think about randomness

Random variables

- Probability/statistics allows us to analyze chance events in a logically way
- The probability of an event is a number indicating how likely that event will occur
- Probability is always between 0 (never happens) and 1 (always happens)
- Random variable assigns numbers to different outcomes (each with a probability)
- Coin toss. It's random. Each face has $\frac{1}{2}$ probability
- By assigning 1 to tail and 0 to head we created a random variable

Before we go any further, some clarifications

- Goal: Estimate unknown parameters
- To approximate parameters, we use an estimator, which is a function of the data

Important notation

Based on this tweet: https://twitter.com/nickchk/status/1272993322395557888

- Greek letters (e.g., μ) are the truth (i.e., parameters of the true DGP)
- Greek letters with hats (e.g., $\widehat{\mu}$) are estimates (i.e., what we think the truth is)
- Non-Greek letters (e.g., X) denote sample/data
- Non-Greek letters with lines on top (e.g., \bar{X}) denote calculations from the data (e.g., $\bar{X}=\frac{1}{N} \sum_{i} X_{i}$).
- We want to estimate the truth, with some calculation from the data $(\widehat{\mu}=\bar{X})$
- Data \longrightarrow Calculations \longrightarrow Estimate $\underbrace{\longrightarrow}_{\text {Hopefully }}$ Truth
- Example: $X \longrightarrow \bar{X} \longrightarrow \widehat{\mu} \underbrace{\longrightarrow}_{\text {Hopefully }} \mu$

Notation example with a coin toss

- μ denotes the true probability a coin lands head ($\frac{1}{2}$ if the coin is fair)
- $\widehat{\mu}$ is our estimator of the probability a coin lands head
- X is the data we gather from tossing a coin 500 times
- \bar{X} is the proportion of times the coin lands head
- Data from coin tosses \longrightarrow Calculate proportion of heads \longrightarrow Estimator for the probability of heads $\underbrace{\longrightarrow}_{\text {Hopefully }}$ True probability
- $\mathbf{X} \longrightarrow \bar{X} \longrightarrow \widehat{\mu} \underbrace{\longrightarrow}_{\text {Hopefully }} \mu$

Discreet random variables

- Takes only a discreet set of values
- Probability distribution $(P(X=x)=f(x))$: probability event x happens
- $f(x) \in[0,1]$
- Cumulative probability distribution $(P(X \leq x)=F(x)$: probability random variable is less than or equal to x

Continuous random variables

- Takes a continuum of values
- Probability density function $(f(x))$: not the probability x happens
- zero since there are infinity many possible values
- $P(a<x<b)=\int_{a}^{b} f(x) d x$
- $f(x)$ helps us recover the probability that a random variable is in an interval
- $f(x) \in[0,1]$
- Cumulative probability distribution $\left(P(X \leq x)=F(x)=\int_{-\infty}^{x} f(x) d x\right.$: probability random variable is less than or equal to x

Summarizing a distribution

- What are we actually doing when we do something like take a mean or a median?
- We're trying to say something about the distribution of that variable
- Distribution: how often values occur when you randomly sample over and over
- Distribution of a coin toss: half the times you get "head" (other half get "tail")
- Distribution of the minutes in the day: it's equally likely to be any minute
- Distribution of height looks like a bell-curve shape
- Distribution of income/wealth: Most people near the bottom; very few at the top
- https://wid.world/simulator/
- https://mkorostoff.github.io/1-pixel-wealth/

Summarizing a distribution: Expectations and variances

- Expectation attempts to capture the "mean" of the random variable
- Variance quantifies the spread of the random variable

Summarizing a distribution: Expectations and variances

- Expectation attempts to capture the "mean" of the random variable
- Variance quantifies the spread of the random variable
- For a discreet random variable
- $\mathbb{E}[X]:=\sum_{x} f(x) x$
- $V(X):=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x} f(x)(x-\mathbb{E}[X])^{2}$

Summarizing a distribution: Expectations and variances

- Expectation attempts to capture the "mean" of the random variable
- Variance quantifies the spread of the random variable
- For a discreet random variable
- $\mathbb{E}[X]:=\sum_{x} f(x) x$
- $V(X):=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x} f(x)(x-\mathbb{E}[X])^{2}$
- For a continuous random variable
- $\mathbb{E}[X]:=\int_{-\infty}^{\infty} f(x) x d x$
- $V(X):=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\int_{-\infty}^{\infty} f(x)(x-\mathbb{E}[X])^{2} d x$

Expectations and variances

For any constants a and b and random variables X and Y :

- $\mathbb{E}[a X+b]=a \mathbb{E}[X]+b$
- $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$
- $V(a X+b)=a^{2} V(X)$
- $\operatorname{Cov}(X, Y):=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$
- $\operatorname{Cor}(X, Y):=\frac{\operatorname{Cov}(X, Y)}{V(x) V(y)} \in[-1,1]$
- $V(X+Y)=V(X)+V(Y)+2 \operatorname{Cov}(X, Y)$

Independence

- X and Y are independent if $P(X<x, Y<y)=P(X<x) P(Y<y)$
- If X and Y are independent then:
- $E(X Y)=E(X) E(Y)$
- $\operatorname{Cov}(X, Y)=0$ (if $\operatorname{Cov}(X, Y)=0$ this does not imply independence)
- $V(X+Y)=V(X)+V(Y)$

No correlation does not mean no causality/dependence: Mathematical fact

- Let X be a random variable such that $P(X=x)=\frac{1}{3}$ if $x \in\{-1,0,1\}$
- Let $Y=X^{2}$
- X and Y are not independent (in fact Y is a function of X)
- $\mathbb{E} X=0$
- $\mathbb{E} Y=\frac{2}{3}$
- $\mathbb{E} X^{3}=0$

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathbb{E}(X-\mathbb{E}(X))(Y-\mathbb{E}(Y)) \\
& =\mathbb{E}(X)\left(X^{2}-\frac{2}{3}\right) \\
& =\mathbb{E}\left(X^{3}-X \frac{2}{3}\right) \\
& =\mathbb{E}\left(X^{3}\right)-\frac{2}{3} \mathbb{E}(X) \\
& =0
\end{aligned}
$$

Normal distribution

Let $X \sim N\left(\mu, \sigma^{2}\right)$

- The probability density function (PDF) of X is given as:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- The cumulative distribution function (CDF) of X is given as:

$$
P(X<x)=F_{X}(x)=\int_{-\infty}^{x} f_{X}(x)
$$

- $\mathbb{E}[X]=\mu$
- $V(X)=\sigma^{2}$
- A standard normal has mean zero $(\mu=0)$ and variance one ($\sigma=1$)
- $\Phi(\cdot)$: CDF of the standard normal

Normal distribution

- For $a, b \in \mathbb{R}$ and independent random variables $X \sim N\left(\mu_{X}, \sigma_{X}^{2}\right) ; Y \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$
- $a X+b \sim N\left(a \mu_{X}+b, a^{2} \sigma_{X}^{2}\right)$
- $X+Y \sim N\left(\mu_{X}+\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)$
- Therefore

$$
\frac{X-\mu_{X}}{\sigma_{X}} \sim N(0,1)
$$

- The cumulative distribution function (CDF) of X is given as:

$$
P(X \leq x)=P(\underbrace{\frac{X-\mu_{X}}{\sigma_{X}}}_{\text {Standard normal }}<\frac{x-\mu_{X}}{\sigma_{X}})=\Phi\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)
$$

Generating Normal data

- Good for many 'real-world' variable: height, intellect, log income, education level
- Especially when those distributions tend to be tightly packed around the mean!
- Less good for variables with huge huge outliers, like stock market returns
- 'rnorm(thismanyobs,mean,sd)' will draw 'thismanyobs' observations from a normal distribution with mean 'mean' and standard deviation 'sd'
- 'rnorm(thismanyobs)' will assume 'mean=0' and 'sd=1'
normaldata $<-$ rnorm(5)
normaldata
normaldata $<-$ rnorm (2000)
hist (normaldata,
xlab="Random Value",
main="Random Data from Normal Distribution",
probability=TRUE)

Distribution of Random Data from Normal Distribution

No correlation does not mean no causality/dependence: Mathematical fact II

- Let $X \sim N(0,1)$
- Let $Y=X^{2}$
- X and Y are not independent (in fact Y is a function of X)
- $\mathbb{E} X=0$
- $\mathbb{E} Y=\sigma^{2}$
- $\mathbb{E} X^{3}=0$

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathbb{E}(X-\mathbb{E}(X))(Y-\mathbb{E}(Y)) \\
& =\mathbb{E}(X)\left(X^{2}-\sigma^{2}\right) \\
& =\mathbb{E}\left(X^{3}-X \sigma^{2}\right) \\
& =\mathbb{E}\left(X^{3}\right)-\sigma^{2} \mathbb{E}(X) \\
& =0
\end{aligned}
$$

Uniform distribution

Let $X \sim U(a, b)$

- $f_{X}(x)= \begin{cases}\frac{1}{b-a} & \text { if } a \leq x \leq b \\ 0 & \text { otherwise }\end{cases}$
- $\mathbb{E}[X]=\frac{b+a}{2}$
- $V(X)=\frac{(b-a)^{2}}{12}$
- $c X \sim U(c a, c b)$
- $X+d \sim U(a+d, b+d)$

Generating uniform data

- Good for variables that should be bounded: e.g., "percent male" can only be 0-1
- Gives even probability of getting each value
- 'runif(thismanyobs,min, max)' will draw 'thismanyobs' observations from the range of 'min' to 'max'.
- 'runif(thismanyobs)' will assume 'min=0' and 'max=1'

```
uniformdata <- runif(5)
uniformdata
uniformdata <- runif(2000)
hist(uniformdata,xlab="Random Value",
main="Random Data from Uniform Distribution",
probability=TRUE)
```

Distribution of Random Data from Uniform Distribution

Generating Other Kinds of Data

- 'sample()' picks randomly from categories (e.g., Heads/Tails) or integers (e.g., '1:10')
- R can generate random data from other distributions. See 'help(Distributions)'
- We have looked quickly at two:
- The uniform distribution
- The normal distribution
- But don't forget there are more
- When generating "random" data: set a seed so you can reproduce the results ('set.seed(XXX)')

Law of large numbers

- Let X_{1}, \ldots, X_{N} be independent and identically distributed (iid) with mean μ and variance σ^{2}
- $\mathbb{E}\left[\sum_{i=1}^{N} x_{i}\right]=N \mu$
- $v\left(\sum_{i=1}^{N} x_{i}\right)=N \sigma^{2}$
- $V\left(\frac{1}{N} \sum_{i=1}^{N} X_{i}\right)=\frac{1}{N} \sigma^{2}$
- $\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} X_{i}\right]=\mu$
- As n grows, the variance goes to zero, but the mean is always μ
- That is, the mean of the random variables (\bar{X}) converges (in probability) to μ

Example: Coin flips

- Throw a coin 1,000 times
- Let's create a random variable $X= \begin{cases}1 & \text { if coin }=\text { Heads } \\ 0 & \text { if coin }=\text { tails }\end{cases}$
- $\mathbb{E}(X)=1 \frac{1}{2}+0 \frac{1}{2}=\frac{1}{2}$
- $V(X)=(1-0.5)^{2} \frac{1}{2}+(0-0.5)^{2} \frac{1}{2}=\frac{1}{4}$
- \bar{X} proportion of times coin lands on heads
- $\mathbb{E} \bar{X}=\frac{1}{2}$
- $\mathbb{V} \bar{X}=\frac{1}{4 N}$

Example: Coin flips

A little simulation:

```
## Generate data with 1000 coin flips
## Pprob of head and tail is the same
data <- sample(c("Heads","Tails"),1000,replace=TRUE)
## Create random variable (one if heads, zero if tails)
X<-as.numeric(data=="Heads")
# Calculate the proportion of heads of the first n observations
X_n<-cumsum(X)/(1:1000)
#Plot the results
plot(1:1000,X_n,bty="L",ylim=c(0,1),
ylab="Average",xlab="Tosses",type="l",lwd=2,
cex.lab=1.5,cex.axis=1.5,cex.main=1.5)
abline(h=0.5,lty=2, col=2,lwd=2)
```


Law of large numbers in action

Central limit theorem

- Let X_{1}, \ldots, X_{N} be iid with mean μ and variance σ^{2}
- $\frac{\frac{1}{N} \sum_{i=1}^{N} x_{i}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{\bar{X}_{n}-\mu}{\frac{\sigma}{\sqrt{n}}}$ is distributed approximately (converges in law) $\sim N(0,1)$
- The larger N is, the closer the distribution of $\frac{\bar{X}_{n}-\mu}{\sqrt{n}}$ is to $N(0,1)$
- $\bar{X} \sim N\left(\mu, \frac{\sigma}{N}\right)$

Example: Coin flips CLT

```
# We will do this process 10,000 times!
Repetitions=10000
# Each time, we will throw the coin 1,000 times
CoinFlips=1000
# This is a vector we will save the proportion of heads in each repetition
Vector_Means=rep(NA,Repetitions)
# Loop over the repetitions
for(rep in 1:Repetitions){
    #Create the coinflip data
    data <- sample(c("Heads","Tails"), CoinFlips, replace=TRUE)
    #generate random variable
    X=as.numeric(data== "Heads")
    #save the proportion of times it lands head
    Vector_Means[rep]=mean(X)
}
```


Example: Coin flips CLT

```
#Should converge to a N(0.5,0.25/CoinFlips) by CLT
pdf("CLT.pdf")
#Plot the distribution of the means
hist(Vector_Means, col="red", xlab="Proportion of heads",breaks=50,
    main="CLT", probability =T,
    cex.lab=1.5,cex.axis=1.5,cex.main=1.5)
#Plot N(0.5,0.25/CoinFlips)
xfit<-seq(min(Vector_Means), max(Vector_Means), length=40)
yfit<-dnorm(xfit,mean=0.5,sd=sqrt(0.25/CoinFlips))
lines(xfit, yfit, col="blue", lwd=2)
dev.off()
```


CLT

Simulations, and probability and statistics review

Introduction and simulations

Review of probability and statistics

Statistical inference

Application: is a coin fair?

Simulations, and probability and statistics review

```
Introduction and simulations
Review of probability and statistics
```

Statistical inference

Application: is a coin fair?

Inference

- Goal: Estimate unknown parameters
- To approximate parameters, we use an estimator, which is a function of the data
- Thus, estimator is a random variable (it is a function of a random variable)
- Use relationship between estimator (its distribution usually) and parameters to infer something about the parameters

Important notation

Based on this tweet: https://twitter.com/nickchk/status/1272993322395557888

- Greek letters (e.g., μ) are the truth (i.e., parameters of the true DGP)
- Greek letters with hats (e.g., $\widehat{\mu}$) are estimates (i.e., what we think the truth is)
- Non-Greek letters (e.g., X) denote sample/data
- Non-Greek letters with lines on top (e.g., \bar{X}) denote calculations from the data (e.g., $\bar{X}=\frac{1}{N} \sum_{i} X_{i}$).
- We want to estimate the truth, with some calculation from the data $(\widehat{\mu}=\bar{X})$
- Data \longrightarrow Calculations \longrightarrow Estimate $\underbrace{\longrightarrow}_{\text {Hopefully }}$ Truth
- Example: $X \longrightarrow \bar{X} \longrightarrow \widehat{\mu} \underbrace{\longrightarrow}_{\text {Hopefully }} \mu$

Properties of a good estimator

- Unbiased: $\mathbb{E}(\widehat{\mu})=\mu$
- Consistent: $\widehat{\mu} \rightarrow \mathrm{P} \mu$
- Think of this as: unbiased + variance goes to zero when N grows

Simulations, and probability and statistics review

Introduction and simulations

Review of probability and statistics

Statistical inference

Application: is a coin fair?

Simulations, and probability and statistics review

```
Introduction and simulations
Review of probability and statistics
Statistical inference
```

Application: is a coin fair?

Example: is a coin is fair?

- Toss a coin
- Assign head $=1$, tail $=0$
- μ is the probability it lands heads (if coin is fair $\mu=\frac{1}{2}$)
- What is a good estimator of μ ?

Example: is a coin is fair?

- Toss a coin
- Assign head $=1$, tail $=0$
- μ is the probability it lands heads (if coin is fair $\mu=\frac{1}{2}$)
- What is a good estimator of μ ?
- Let's try: average of the observations: $\widehat{\mu}=\bar{X}$

Example: is a coin is fair?

- Is it unbiased? Yes: $\mathbb{E} \bar{X}=\frac{1}{N} \sum_{i} \mathbb{E} X=\frac{1}{N} \sum_{i} \mu=\mu$
- Is it Consistent? Yes by the law of large numbers

Example: is a coin is fair?

- Is it unbiased? Yes: $\mathbb{E} \bar{X}=\frac{1}{N} \sum_{i} \mathbb{E} X=\frac{1}{N} \sum_{i} \mu=\mu$
- Is it Consistent? Yes by the law of large numbers
- Assume in the actual data we observe $\bar{X}=0.6$
- Is the coin fair?

Example: is a coin is fair?

- Our certainty is going to depend on how many times we tossed the coin
- By the CLT $\frac{\sqrt{N}}{\sigma}(\bar{X}-\mu) \sim N(0,1)$
- $\sigma^{2}=\mu(1-\mu)$
- Then $\bar{X} \sim N\left(\mu, \mu(1-\mu) \frac{1}{N}\right)$

If $\mu=0.5$ the CLT says the distribution is the following

100 tosses

1000 tosses

To assess fairness we need to know where μ lies (Confidence interval)

- We are going to play around to see if we can find an "interval" for μ
- We want to find some values a and b such that $P(a<\mu<b)=1-\alpha$
- $P(-a>-\mu>-b)=1-\alpha$
- $P(\bar{X}-a>\bar{X}-\mu>\bar{X}-b)=1-\alpha$
- $P(\frac{\bar{X}-a}{\sqrt{\sigma^{2} \frac{1}{N}}}>\underbrace{\frac{\bar{X}-\mu}{\sqrt{\sigma^{2} \frac{1}{N}}}}_{\text {standard normal }}>\frac{\bar{X}-b}{\sqrt{\sigma^{2} \frac{1}{N}}})=1-\alpha$
- Assuming we want symmetry (so $\frac{\alpha}{2}$ on each side), then:
- $\phi\left(\frac{\bar{x}-b}{\sqrt{\sigma^{2} \frac{1}{N}}}\right)=\frac{\alpha}{2}$
- $\phi\left(\frac{\bar{x}-a}{\sqrt{\sigma^{2} \frac{1}{N}}}\right)=1-\frac{\alpha}{2}$

Confidence interval

- Thus:
- $\Phi^{-1}\left(\frac{\alpha}{2}\right)=\frac{\bar{x}-b}{\sqrt{\sigma^{2} \frac{1}{N}}}$
- $\Phi^{-1}\left(1-\frac{\alpha}{2}\right)=\frac{\bar{X}-a}{\sqrt{\sigma^{2} \frac{1}{N}}}$
- $b=\bar{X}-\phi^{-1}\left(\frac{\alpha}{2}\right) \sqrt{\sigma \frac{1}{N}}$
- $a=\bar{X}-\phi^{-1}\left(1-\frac{\alpha}{2}\right) \sqrt{\sigma \frac{1}{N}}$
- μ is between $\bar{X}-\Phi^{-1}\left(1-\frac{\alpha}{2}\right) \sqrt{\sigma \frac{1}{N}}$ and $\bar{X}-\Phi^{-1}\left(\frac{\alpha}{2}\right) \sqrt{\sigma \frac{1}{N}}$ with probability $1-\alpha$

To assess fairness we need to know where μ lies

- Say $\alpha=5 \%$, then $\Phi^{-1}\left(\frac{\alpha}{2}\right)=-1.96$ and $\Phi^{-1}\left(1-\frac{\alpha}{2}\right)=1.96$
- $\bar{X}=0.6$, then $\sigma^{2}=(0.6) 0.4$
- Then we know μ is between:
- $0.6-1.96 \frac{1}{N} \sqrt{0.24}$
- $0.6+1.96 \frac{1}{N} \sqrt{0.24}$

To assess fairness we need to know where μ lies

- We know μ is between:
- $0.6-1.96 \frac{1}{N} \sqrt{0.24}$
- $0.6+1.96 \frac{1}{N} \sqrt{0.24}$
- If $N=10$ then
- ≈ 0.903
- ≈ 0.2906
- Coin could be fair
- If $N=100$ then
- ≈ 0.50398
- ≈ 0.69602
- 'Data we observe is unlikely (less than 5% chance) to come from a fair coin
- If $N=1,000$ then
- ≈ 0.5696358
- ≈ 0.6303642
- Data we observe is unlikely (less than 5% chance) to come from a fair coin
- p -value: α such that 0.5 is right at the edge of the confidence interval
- Data we observe is unlikely (less than p-value chance) to come from a fair coin

